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Description of the Radial 
Distribution Function of Liquid Argon 
in the Quasi-Crystalline Model of 
Liquids 
N. N. MEDVEDEV and YU. I .  NABERUKHIN 
Institute of Chemical Kinetics and Combustion, Novosibirsk 630090. USSR 

(Reoeived May 25, 1978) 

It is shown that the radial distribution function (RDF) of liquid argon is described quantitatively 
in terms of the quasi-crystalline model of liquids (crystal lattice with the lattice sites smeared 
out by Gaussian distributions) under the following conditions: 

1) The model is based on the BCC lattice 
2) The dispersion of the Gaussian distributions depends linearly on the radius of the CO- 

3) The initial lattice is dilated isotropically with the exception of the first sphere. 
ordination sphere. 

Empirical methods of determination of the dispersion law are proposed which show that the 
dispersion law is not simple for liquid argon described on the basis of the FCC and HCP lattices. 
The regularities found allow one to treat liquid argon as an irregular atom packing with a random 
distribution of local compressions and expansions but with a regular alternation of the co- 
ordination spheres at large distances backing order). 

1 INTRODUCTION 

The quasi-crystalline model of liquids proposed by Prins and Petersen in 
1936 describes the spatial arrangement of particles as a result of smearing 
out the sites of a certain crystal lattice according to the Gaussian law. This 
model turns to be useful for interpretation of diffraction experiments on 
liquids and has been utilized in many works (e.g., see Refs. 1-8). 

The quasi-crystalline model can be treated from two viewpoints. It can 
be considered as formal means for description of the experimental radial 
distribution functions (RDF) for liquids. In this case it is quite justified to 
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168 N. N. MEDVEDEV AND YU. I .  NABERUKHIN 

compare the experimental and model RDFs at a qualitative or semi-quali- 
tative level, in terms of similarity or difference, as it is done, e.g., in papers by 
Tsvetkov and The other viewpoint, more interesting for physics 
of liquids, is that the quasi-crystalline model is not only a formal scheme but 
reflects correctly certain features of the liquid structure. At present it is im- 
possible to deduce this assumption from first physical principles, it is necessary 
to compare systematically calculation and experiment to justify it. It is 
natural that in this approach only a quantitative description of experiment 
is of value. 

In this paper we shall describe quantitatively the experimental RDF of 
liquid argon on the basis of the quasi-crystalline model without setting a 
priori any requirements on the behaviour of parameters of the model 
except those which result necessarily from its mathematical formalism. This 
approach allows us to discuss the physical meaning of the parameters ob- 
tained and, we hope, offers a possibility to elicit from the RDF of liquids a 
certain information on the liquid structure. 

2 FORMALISM OF THE QUASI-CRYSTALLINE MODEL 

An adequate mathematical formulation of the model is of primary im- 
portance for quantitative description of the RDF. The basic concepts of the 
mathematical formalism of the quasi-crystalline model can be considered 
well determined due to works of various authors done during the last ten 
years. These consist in three points. 

1) Franchettig and Bagchi" found that in the quasi-crystalline model 
the RDF is described by the formula 

D(R) = -1 R "  L { e x p [ -  
f i i = ,  Riai  

where the sum is over the coordination spheres of the lattice to be smeared out 
with Ri  and Ni being the radius and coordination number of these spheres. 

2) It follows from the general statistical considerations (see Ref. 11 and 
Section 6.2 of the present paper) that at sufficiently large distances the dis- 
persions of the Gaussian distributions, c;, must obey the law of structural 
diffusion 

cz = PRi.  (2) 

This law is valid only asymptotically and reflects statistical independence 
of the displacements of the particles in the liquid relatively to each other at 
large distances. On the contrary, the displacements of neighbouring particles 
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QUASI-CRYSTALLINE MODEL OF LIQUID ARGON 169 

must be correlated, and one can expect a deviation from the law of structural 
diffusion (2) for several first coordination  sphere^.^,^^'^ 

3) As was shown in our recent paper” quantities Ri and Ni in formula (1) 
cannot coincide exactly with the radii of the coordination spheres (RI) and 
the coordination numbers (NP) of any real crystal lattice. If such a coincidence 
took place, the asymptote of the RDF calculated by (1) with law (2) would be 

D(R)R,, - 4xp(R2 + BR). 

In other words, the function H(R) = D(R)  - 4xpR2 would behave asymp- 
totically as 

whereas from physical considerations it must tend to zero. To remove this 
nonphysical behaviour of the asymptote, it is necessary to modify the crystal 
lattice before smearing out by varying the radii of its coordination spheres 
and the coordination numbers. Such a modification can be done in various 
modes. So, in the case of a linear dilatation of the lattice, 

H(R1R-m 4xpBK (3) 

Ri = kR:, (4) 
the coordination numbers must be varied by the law (Medvedev and 
Naberukhin)” 

(5 )  
Here p L  and pc are the average densities of the liquid considered and of the 
initial crystal lattice, k is a constant coefficient. 

All the three points of the mathematical formalism of the quasi-crystalline 
model have never been used simultaneously for a quantitative fitting of the 
model to experiment. In most of papers (especially in old ones) the basic 
formula for calculations is written intuitively. As a result, either the RDF, 
D(R),’-3 or the pair correlation function, g(R)  = D(R)/4xpR2 (Prins and 
Petersen)I3 is decomposed into the Gaussian distributions. As a matter of 
fact, formula (1) shows that it is the function D(R)/R that is the sum of 
Gaussians. There are papers (e.g., see Ref. 3) where the law of structural 
diffusion (2) is neglected without any argumentations and the dispersions 
of all coordination spheres at large distances are considered to be the same. 
This violates the logics of the quasi-crystalline model and demands to intro- 
duce instead of (2) other suppositions which seem to be not obligatory. 
Bagchi’ fits the model to experiment over a limited range of R by independent 
variation of all Ri and N i .  This approach can at best give a good formal 
description of the RDF, but from the very beginning it is not aimed at finding 
the regularities of the liquid structure and cannet be called a physical model. 

The third point of the mathematical formalism of the quasi-crystalline 
model deserves particular attention. It is difficult to see the nonphysical 

N~ = k3~;(1 - F / R J ~ L / ~ ~ .  
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behaviour of the asymptote if the RDF is calculated until small values of 
R ,  within the limitsof the first 2-3 maxima, as it is done in a number of 
papers.’.’,’ Moreover, it is more convenient to use the differential RDF, 
H(R), to judge of the character of the asymptote, since according to (3) the 
mean line of oscillations of the function H ( R )  systematically deviates from 
zero with growing R.  This behaviour of the asymptote was observed by 
Franchetti and Mazza’ when calculating the function H(R)  on the basis of 
the first two pointsofthe formalism for liquefied noble gases till R = 20A.The 
deviation of the asymptote from zero, as we have specially tested,” is de- 
scribed perfectly well by formula (3). To correct the behaviour of the asymp- 
tote Franchetti and M a u a 5  proposed to dilate nonlinearly the initial crystal 
lattice. However, this recipe improves the ‘behaviour only over a limited 
interval of R and does not result in a correct asymptote.” In more recent 
papers F r a n ~ h e t t i ~ . ~  gives no analysis of the asymptote behaviour but 
calculates the function g ( R )  where the effects in question cannot be ob- 
served visually. 

We have mentioned not all suppositions made when realizing the quasi- 
crystalline model. It is clear from the foregoing that so far there is no 
conventional method to determine the parameters of the model. Therefore, 
any existing calculation procedure is not free from arbitrary assumptions. As 
a result, it is not surprising that different authors come to different conclusions 
on the structure of one and the same liquid, e.g., according to Franchetti and 
Mazza’ and Franchetti6 the initial crystal lattice for liquid argon represents 
hexagonal close packing (HCP) whereas according to Bagchi (1972) it is 
similar to the face-centred cubic lattice.’ On the other hand, we have shown14 
that asymptotic oscillations of the experimental RDF for liquid argon can 
be described by none of the three lattices, HCP, FCC and BCC (body- 
centred cubic), provided these are not modified. 

The above three points of the mathematical formalism of the quasi- 
crystalline model impose strong limitations on the parameters of the model 
and remove to a considerable extent arbitrariness in their selection. Never- 
theless, these are not sufficient to develop a model on the whole. It is clear 
that to choose the crystal lattice is of primary importance for the model. How- 
ever, the main aim of calculations is to determine the type of the lattice for a 
given liquid, and thus it must not be a point of the formalism of the model. 
We think there must be the following additional points of the formalism: 

4) The dispersion law of the Gaussian distributions in the nearest coordi- 
nation spheres and 

5 )  the way of modification of the initial crystal lattice. 
The following sections of the present paper are devoted to these problems. 
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QUASI-CRYSTALLINE MODEL OF LIQUID ARGON 171 

3 DETERMINATION OF THE DISPERSION LAW FROM 
EXPERIMENT 

The damping rate of RDF peaks is determined evidently by the law of dis- 
persion change with the distance. Calculations show that using law (2) one 
obtains for the BCC lattice a rapid exponential damping of oscillations of the 
function Rh(R) = R(g(R) - l), and in the case of the Debye smearing (dis- 
persion is the same for all spheres) the oscillations of this functions are not 
damped.14 The functional dependence d ( R )  ensuring the same damping 
of the calculated and experimental RDFs can be found as follows. Suppose 
that the amplitude of each peak of the calculated RDF depends mainly on the 
dispersion value under this peak, i.e., only on the local dispersion, and is 
independent of the concrete form of the function .*(R). This supposition is 
valid at least if the dispersion varies negligibly within an RDF peak. Calcu- 
lating by formula (1) we can now plot “calibrating”curves, i.e., dependences of 
the amplitudes of various RDF peaks on the local dispersions. Then, with 
the obtained calibrating dependences, we define the values of the local dis- 
dispersions for each RDF peak from the amplitudes of the experimental 
peaks. These values plotted against the positions of the corresponding 
peaks ofthe experimental RDFgive the desirable dependence of the dispersion 
on R, i.e., the dispersion law which is necessary to describe the amplitudes 
of the experimental RDF peaks. 

The procedure described was realized first of all for the initial lattice of BCC 
type. To plot the calibrating dependences we calculated RDF in two ways: 
with the Debye law of dispersion, g’ = CT; = const, and with the law of 
structural diffusion (2) (taking into account formula ( 5 )  with k = 1). The 
calibrating curves were plotted for each maximum and minimum with varying 
oo and fl respectively. Figure 1 shows that the calibrating dependences are 
practically linear in coordinates fg I Rh(r)  I vs. d and almost similar for all 
extrema studied. However, a more important fact is that both ways of 
smearing the lattice result in similar dependences. This proves our supposition 
that the amplitudes of oscillations of the calculated RDF are determined 
mainly by the values of the local dispersions. With the calibrating dependences 
obtained and on the basis of the known values of the extrema of the exper- 
imental function Rh(R) for liquid argon’ we determined the local dispersions 
which are necessary to describe the corresponding extrema of the exper- 
imental function. Plotting these local dispersions versus the extremum posi- 
tions we found the dispersion law which ensures the description of the 
experimental RDF. Dependences a2(R) obtained are interpolated very well 
by the functions of type 

(6) a2(R*) = a + BR* 
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I 

FIGURE 1 Calibrating curves for the BCC lattice. Calculations by the law of structural dif- 
fusion (uf = p R i )  are given in solid line, those for the Debye smearing (uf = ui) in dashed line. 
The curves plotted are averaged calibrating dependences for extrema starting from the second 
minimum and ending with the seventh maximum. Vertical bars show a maximum range of 
deviations of the dependences for separate extrema. 

(R* = R / R , ) .  Calculation by the least squares method gives for the case of 
the Debye law of dispersion. 

a = -0.o090 f 0.0017, 

and for the law of structural diffusion 

a = -0.0157 k 0.0018, 

f? = 0.0242 f O.OOO4, 

f? = 0.0269 k O.OOO4. 

(7) 

(8) 
Functions Rh(R)  calculated by law (6) are compared with experiment in 

Figure 2. We see that, firstly, the functions corresponding to both sets, (7) 
and (8), of parameters a and f? differ slightly. This proves the used procedure 
of determining oZ(R) to be reliable. Secondly, the calculated function (es- 
pecially with parameters (8)) reproduces well the character of damping the 
experimental function. This allows us to state that law (6) is necessary for 
description of the RDF of liquid argon in the quasi-crystalline model. 

Nevertheless, the fit of the model to experiment cannot be considered good 
since the positions of the calculated and experimental RDF peaks do not 
coincide (Figure 2). As we noted earlier14 it is impossible to obtain coinci- 
dence of the peaks only by selecting the parameters in a given law of lattice 
smearing. Therefore, further modification of the radii of the coordination 
spheres, R i ,  and the coordination numbers, Ni, of the initial lattice is re- 
quired. 
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FIGURE 2 Comparison of the model function Rh(R) with experiment. a) Calculations based 
on the BCC lattice with parameters (7). b) Calculations with parameters (8). Squares denote the 
function Rh(R) for liquid argon according to Yarnell et al.,'' with R, = 3.71 A. 
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4 LATTICE DILATATION 

A systematical shift of calculated RDF peaks relative to experiment mani- 
fests that distant coordination spheres of the lattice describing the structure 
of liquid argon have somewhat larger radii than the corresponding spheres of 
the BCC lattice. Consequently, to describe the RDF of liquid argon, we must 
change (dilate)’ the radii of the distant spheres of the lattice with respect to 
that of the first coordination sphere. 

Figure 3 demonstrates.that the difference of the extremum positions of the 
experimental and calculated RDFs (shown in Figure 2) turns out to be 
approximately proportional to the position of the corresponding extremum 
starting from the second peak. Hence, the radii of the coordination spheres 
of the BCC lattice must be linearly transformed starting from the spheres 
which determine the second peak of the RDF. According to Figure 3 one 
should take Ri  = 1.03RP. On the other hand, the radius of the first co- 
ordination sphere, RP, must remain constant since it has been initially chosen 
so that it describes correctly the position of the first peak of the experimental 
RDF. For the sake of definiteness we shall further assume that the dilatation 
affects all the coordination spheres except the first one, i.e., 

Ri  = l.O3RP(i > l), R ,  = R;. (9) 
The RDF obtained on the basis of the BCC lattice dilated by law (9) well 

describes the extremum positions of the experimental RDF when law (6) is 
used with parameters (7) and (8). The fit of amplitudes becomes however 
somewhat worse. To find a more precise law of smearing the dilated lattice, 

FIGURE 3 Differences of the extremum positions of the experimental and the model func- 
tions Rh(R) plotted as a function of positions of corresponding extrema of the model function. 
The dependence corresponds to the functions shown in Figure 2b. 
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I 

FIGURE 4 The local dispersions which give fitting the oscillation amplitudes of the model 
to the experimental functions Rh(R) plotted against the positions of corresponding maxima, 
Calculations are based on the BCC lattice. The line corresponds to law (6)  with parameters (10). 

we used again the method described in Section 3, i.e., we plotted calibrating 
dependences of extrema of the calculated function l g  I Rh(R) I vs. the local 
dispersions. This time the BCC lattice was dilated by law (9), and the cal- 
culations were carried out with varying /? in the law of structural diffusion (2). 

Figure 4 demonstrates that the dispersion law obtained with the new cali- 
brating dependences is described again by a linear function of type (6) with 
coefficients I 

a = -0.015 0.003, /? = 0.0279 _+ 0.0007. (10) 

More accurate definitions of the parameters a and /? as given by sequence of 
three sets (7), (8) and (9) is essential for quantitative fit of the model to 
experiment. 

The RDF calculated on the basis of the dilated by (9) BCC lattice using 
dispersion law (6) and set of parameters (10) well coincides now with the 
experimental RDF not only in the positions and amplitudes of the extrema 
but also in the overall behaviour in the interval from the second to the eighth 
maximum (Figure 5). The only exception is the first peak which needs particu- 
lar discussion. 

Figure 4 shows that the dispersion of the first peak does not obey law (6) 
which is valid for all following extrema. This means that the dispersion ofthe 
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first coordination sphere must be expressed in a special way. According to 
Figure 4 the local dispersion in the first peak must be CT: = 0.006. For 
definiteness we assume that this dispersion corresponds to the first co- 
ordination sphere, and the dispersions of all other spheres starting from the 
second one obey the general law (6). In this case the calculated RDF gives the 
correct height of the first peak (Figures 5 and 6). As to the location of the 
first peak, Figure 6 shows clearly that the radius of the first sphere must not 
participate in the lattice dilatation, i.e., the necessity of law (9). If R ,  were 
increased like the radii of the distant spheres, not only the maximum but the 
entire peak would be shifted as compared to the experimental one. 

A special choice of the position and dispersion of the first coordination 
sphere is not sufficient, however, to reproduce correctly the form of the first 
peak. The experimental peak is very asymmetrical. This fact, which has been 
often discussed in the l i terat~re~- '* '~. ' '  manifests the repulsive core of inter- 
atomic potential. It is perhaps impossible to obtain a peak with the desirable 
asymmetry within the model with the Gaussian smearing of the lattice sites. 
In this paper we shall not give a detailed description of the form of the first 
peak since we consider here general regularities of the quasi-crystalline 
model. The law of smearing the first coordination sphere is, though important, 
only one of these regularities. 

FIGURE 5 Comparison of the model and experimental (squares) functions Rh(R). Calcula- 
tions with parameters (10) are based on the BCC lattice dilated according to (9). 
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~ , ,  I I I I I I \ . I  1 

I 
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FIGURE 6 The first peak of the function Rh(R). Squares-experiment for liquid argon 
according to Yarnell et a1.” Solid line-calculations under the conditions given in Figure 5. 
Dashed line-calculations for the case when the first coordination sphere participates in the 
lattice dilatation by the law Ri = 1.03RP. 

5 RADIAL DISTRIBUTION FUNCTION FOR LIQUID ARGON 
DESCRIBED O N  THE BASIS OF CLOSE-PACKED LATTICES 

The calculations given in Section 3 and Section 4 for the BCC lattice were 
also made for the face-centred cubic (FCC) and hexagonal close packing 
(HCP) lattices. Both lattices are found to give much worse description of 
the RDF of liquid argon as compared to the BCC lattice. This conclusion 
correlates with our earlier result14 that asymptotic oscillations of the RDF 
calculated by the quasi-crystalline model are well described by the Fisher 
formula18 only for the BCC lattice and worse for the FCC and HCP lattices. 

5.1 The FCC lattice 

We showed l 4  that the RDF calculated in the quasi-crystalline model with 
the law of structural diffusion (2) on the basis of the FCC lattice is described 
by the asymptotic Fisher formula only-starting from R - 5R,. Since the 
experimental RDF is described by this formula starting from R - 2R,,  one 
should not expect the smeared FCC lattice to describe satisfactory experiment 
at R < S R , .  The linear dilatation’of the lattice (9) and the modification of 
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the law of structural diffusion by formula (6) do not save the situation in this 
case because the dispersion law, which is necessary for description of the 
values of experimental function Rh(R) at the points of maxima and minima, 
deviates appreciably from linear function (6) (see Figure 7). Only for large R 
it is approximated by the straight line 

U; = -0.022 + 0.026613,. (1 1) 

The RDF calculated with this law and with an appropriate dilatation of the 
lattice, 

Ri = 1.04RP(i > l),  R ,  = RY, 

does resemble the experimental RDF in the region of the last three maxima 
(Figure 8). However, all less distant peaks are badly described by it. The 
calculated function gives too large shifts for the 4th and the 5th maxima and 
too small shift for the 2nd maximum. The amplitudes of near peaks are 
badly described by the dispersion law (1 1) too. In the region of the 2nd and 
the 3rd maxima the calculated and experimental RDFs differ considerably 
even in the form of their peaks. Calculations show that the experimental 
RDF values at the minima after the 2nd and the 3rd peaks cannot be obtained 
with any values of the local dispersions. Therefore, it is impossible to plot in 
Figure 7 the points corresponding to these extrema. 

1 2 3 c. 5 6 R  

FIGURE 7 The local dispersions which are necessary to describe the amplitudes of oscillations 
of the experimental function Rh(R) vs. the positions of corresponding extrema. Calculations are 
based on the FCC lattice. The line corresponds to dispersion law (1 1). 
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I 
1 2 3 4 5 6 A 

FIGURE 8 Experimental (squares) and model (line) functions Rh(R) calculated with dilated 
FCC lattice and dispersion law (1 1 )  where a: = 0.009. 

Thus, it is impossible to describe the RDF of liquid argon on the basis of the 
FCC lattice over a wide range of R using the existing formalism of the quasi- 
crystalline model. There is however hope that this lattice can describe 
experiment at R > 5R, since it results here in a correct form of asymptote. 
However, at present it is impossible to verify this supposition since exper- 
imental data for R > 7R1 are not available. 

5.2 The HCP lattice 

In contrast to the FCC lattice here it is possible to obtain the coincidence 
of the positions of the first six maxima with experiment (Figure 9) by choos- 
ing an appropriate dilatation of the lattice, . 

Ri = 1.14RP - 0.14R;I (12) 
However, the extremum amplitudes are badly described at any parameters of 
the linear law of dispersion (6). For example, at 

a’ = -0.016 + 0.0262Ri (13) 
we overestimate the heights of the 2nd and the 7th peaks and underestimate 
the amplitudes of the maxima in between (Figure 9). This fact shows that the 
local dispersions, which are necessary to describe the heights of the extrema, 
behave irregularly with the radius (see Figure 10). Interesting is the fact that 
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FIGURE 9 Experimental (squares) and model (line) functions Rh(R) calculated on the basis 
of the HCP lattice dilated by (12) with dispersion law (13). 

FIGURE 10 The local dispersions which are necessary to describe :he amplitudes of experi- 
mental Rh(R) for liquid argon. Calculations are based on the HCP lattice. The line corresponds 
to dispersion law (13). 
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QUASI-CRYSTALLINE MODEL OF LIQUID ARGON 

the dilatation law (12) differs from (9) by the presence of a constant term. 
However, this law also leaves constant the position of the first sphere as in 
the case of the previous lattices. 

Thus, the HCP lattice cannot be the basis for description of the RDF of 
liquid argon within the quasi-crystalline model either. To be applicable 
to the model this lattice as well as the FCC lattice demands some particular 
law of varying the dispersion with the distance which must differ from the 
simple linear law (6). However, if the model did not postulate an universal 
form of the dispersion law, it would lose its constructive content. 

181 

6 DISCUSSION 

6.1 The lattice dilatation 

The fact that the first coordination sphere does not participate in the general 
lattice dilatation, R i  = kRP, is nontrivial for the transformation of the radii 
of the coordination spheres (9) needed to describe the RDF of liquid argon. 
If all the spheres, including the first one, participated in the dilatation, it 
would simply result in increasing the lattice constant without changing the 
lattice structure. This uniform dilatation of the initial lattice corresponds to 
the decrease in argon density on melting, and can be readily interpreted in 
terms of an additional free volume attained by each particle on melting. 
However, a proportional increase of the radii of all spheres would not result 
in relative shifts ofthe RDF maxima. Hence, the exclusion of the first coordi- 
nation sphere from the process of thermal expansion is a necessary condition. 
This means that the packing in liquids differs essentially from that in crystals, 
i.e., the quasi-crystalline model must be based on a distorted crystal lattice. 

The requirement of constancy of the first sphere radius found by us from 
the analysis of the experimental RDF in terms of the quasi-crystalline model 
is an analog of the well-known fact that the distance between next-neigh- 
bouring particles remains constant both on melting or heating the liquids 
in close-packed  substance^^.'^*^^ including argon2 ’. The contradiction 
between this fact and the mean expansion of a substance heated is usually 
ascribed to vacancies which occur in the liquid.? These vacancies, if any, 
cannot account for shifts of the RDF peaks since they influence only the co- 
ordination numbers but not the positions of the spheres. Therefore, another 
interpretation of the lattice distortions described by formula (9) must be 
proposed. 

t In terms of vacancies the term !i3p,Jpc in formula (5) is interpreted as 1 - x where x is the 
fraction of vacant sites in the q~asi-lattice.’*~ For our calculations of liquid argon based on the 
BCC lattice, RY = 3.71 A, p L  = 0.02125 k = 1.03, and x = 0.087. 
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182 N. N. MEDVEDEV AND Y U .  I .  NABERUKHIN 

Hence we are to consider that the free volume which occurs on melting is 
distributed neither evenly among the particles nor in the regions of molecular 
size (vacancies). It is irregularly distributed all over the volume of the 
specimen as local compressions and expansions. Hereat the separations 
between nearest neighbours remain approximately the same as those in the 
crystal but the packing becomes looser. The random distribution of the local 
expansions leads to an increase in the mean separations between long-distant 
atoms. Assuming this interpretation we must treat the success of our cal- 
culations as an evidence for the fact that the average positions of the distri- 
butions of the separations between distant particles correspond to the radii 
of the coordination spheres of the BCC lattice uniformly dilated. In other 
words, the local particle compressions and expansions can be represented as 
resulting from random displacements of the particles with a diameter RT from 
the sites of the dilated BCC lattice. The center of the distribution of the 
positions of nearest atoms will not coincide with the radius of the first 
coordination sphere of the dilated lattice because the displacements of the 
particles from the sites of this sphere must be correlated to ensure equal 
nearest distances between the particles. The picture described is close to the 
concept of liquid structure proposed by Berna1.’9.22 Bernal has shown that 
in an irregular close packing of spheres, which represents a model of the simple 
Iiquid structure, neighbouring atoms tend to join up to build pseudonuclei 
with the shortest interparticle distances being practically the same as those 
in crystal. The density of the atom packing in the pseudonuclei is even higher 
than that in close-packed crystals, though the pseudo-nuclei form loose 
packing so that the average density of the liquid is lower than that of the 
crystal. These arrangements of particles are irregular in principle, and Bernal 
considered that those are incompatible with the description by the quasi- 
crystalline model. We think however these two conceptions not to be altern- 
ative. The model of Bernal describes an instantaneous realization of the 
particle positions in the liquid, whereas the quasi-crystalline model deals 
with the distribution of the particle positions averaged over these realiza- 
tions. It goes without saying that the quasi-crystalline model implies 
instantaneous realizations of the particle positions to be irregular though it 
proposes no way to describe these realizations. 

It is worthy of note that the coordination number of the first sphere of the 
BCC lattice, 8, coincides with the mean number of neighbours in Bernal’s 
random close packing, and the mean number of geometrical neighbours in 
this packing (i.e., the mean number of faces of Voronoi polyhedra), 13.6 
(Berna122), practically equals the number of atoms in the first two spheres of 
the BCC lattice, 14. This curious situation appears to throw some light on 
the fact that only the BCC lattice gives good description of liquid. 

Thus, the law of lattice dilatation (9) obtained on the basis of formal 
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QUASI-CRYSTALLINE MODEL OF LIQUID ARGON I83 

analysis of the liquid argon RDF has a clear physical interpretation within 
the ideas being elaborated in the modern theory of liquids. 

6.2 

The linear law of dispersion, uz = a + BRi, was often used in the literature. 
Franchetti’ considered it merely as a possible formal generalization of the 
law of structural diffusion (2). GlaubermanZ3 has shown that this law is ob- 
tained from the supposition that the smearing of the lattice sites results from 
two independent processes-statistical fluctuations obeying formula (2) and 
Debye’s atomic oscillations round instantaneous positions of the sites with 
dispersion &. This interpretation was used by many authors (e.g., see 
Refs 1-3, 8). However, in this case a = CT;, i.e., a > 0, that contradicts the 
condition a < 0 which is necessary (as we have shown in Section 3 and 
Section 4) to describe the liquid argon RDF. To interprete the negative sign 
of a it is useful to consider in more detail the simplified derivation of the 
law of structural diffusion given by Frenkel (Ref. 11, Chapter 111, Section 4). 

Let us consider an ensemble of “trajectories” connecting a fixed atom at 
the origin with an atom at some distant coordination sphere which consists 
of s atoms “in contact,” i.e., at the shortest distances from each other. The 
distance between these two atoms is 

The modified law of structural diffusion 

7 

R, = 1 di 
i= 1 

where di are the separations between the atoms of the trajectory being 
projected on the direction connecting these particles. Averaging over all the 
trajectories of the ensemble, we have for the average distance 

S 

R, = Idi. 
i =  1 

Supposing that the locations of neighbouring particles of the trajectory are 
not correlated, we obtain that 

I 

~f = 1 ACT: 
i =  1 

is valid for the mean-square fluctuation of this distance. Here ACT; is the 
dispersion of the distribution of the projection lengths of the i-th element of 
the trajectory. For simplicity, but without loss of generality (Frenkel’ l) ,  

suppose that the projections of the mean lengths and the dispersions of all 
elements of the trajectory are the same and equal d and ACT; respectively. Then 
( 1  5 )  is reduced to 

R, = sd, (17) 
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and the law of structural diffusion (2) is obtained from (16) if we set fl = 
A&d. 

This consideration can be readily generalized for the case when the loca- 
tions of neighbouring particles are correlated. Then the dispersion of the 
first element of the trajectory will be less than those of the others, 

Auf = Aui(1 - K )  (0 < K < 1). (18) 

The case when K = 1 corresponds evidently to the total correlation. Sub- 
stitute (18) into (16) and obtain 

0 s  2 - - A ~ ;  + A ~ ;  = SAC; - K A ~ ;  
i = 2  

Excluding s by (1  7) we get a linear law of dispersion, 

0 3  = a + flR, 

with 

a = -da; = - ~ d f l ,  fl = A&d. 

Thus, the modified law of structural diffusion (6), as well as law (2), can 
be understood on the basis of very general statistical considerations. The 
negative magnitude of the parameter a obtained for liquid argon is indicative 
of an appreciable correlation in the displacements of its nearest atoms. The 
anomalously small value of the dispersion of the first coordination sphere, 
0: = 0.006, obtained for argon in Section 4 provides one more evidence for 
this correlation. 

6.3 Packing order 

Before making structural conclusions from the data obtained, it shouid be 
noted that the conventional description of the liquid structure in terms of 
short-range and long-range order is not appropriate for this purpose. The 
absence of the long-range order in liquids is usually understood as the 
absence of the translational symmetry in the arrangements of their atoms. 
This property is however general for all liquids and its constatation for a given 
liquid, made by rapid damping of RDF maxima, gives no additional informa- 
tion. On the other hand, in liquids there is a short-range order, i.e., a certain 
law of arrangement of nearest neighbours which is manifested in the pro- 
nounced structure of the first RDF peak. However, as was shown in Section 
4, the quasi-crystalline model in its simplest form fails to give a good descrip- 
tion of the first peak shape. Thus, those features of the RDF of liquids which 
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are well reproduced by the quasi-crystalline model, i.e., the character of 
oscillations beyond the first maximum, correspond to neither the short- 
range order nor the long-range order. 

In this context it is useful to remember that the notion of short-range 
and long-range order was first introduced by %thez4 not for liquids but for 
crystalline binary alloys. In this case the long-range order has a quantitative 
characteristic which shows the fraction of atoms located in “proper” sites 
of the crystal In liquids this measure of the long-range order is 
unacceptable, therefore the notion of long-range order itself loses its con- 
structuve meaning. 

The above considerations makes it expedient to introduce a special notion 
of packing order which, together with the notion of short-range order, is 
better adapted for description of the particle arrangement in liquids. The 
packing order is a certain quantitative regularity in the arrangement of long- 
distant particles resulting from their finite size and form (for complex mole- 
cules). The notion of packing order can be also applied to crystals where this 
is not identical with the notion of long-range order. Indeed, every crystal 
system is characterized by its own principle of particle interlocation which 
can be described quantitatively by, e.g., a set of values of the radii and the 
number of atoms in the successive coordination spheres, {RP, NP}, i.e., the 
very information on the crystal lattice which is assumed to be the basis of 
the quasi-crystalline model.? Packing order is a more general concept than 
long-range order since the former can exist in substances even when the latter 
cannot. In crystals the long-range order may be considered as a consequence 
of the packing order. 

The existence of a packing order in liquids follows from the presence of 
oscillations in the radial distribution functions of real liquids over all ex- 
perimentally available range of R .  They are indicative of regular variations 
in the local density when moving away from any particle of the liquid. The 
quasi-crystalline model proposes a description of this behaviour of the local 
density. Our calculations have shown that this model gives a good descrip- 
tion of the liquid argon structure only if it is based on the BCC lattice. 
Neither the FCC nor the HCP lattices are appropriate here. The possibility 
to distinguish between the initial lattices when describing the RDF at long 
distances is on no account trivial. The thin is that the average smearing of a 
coordination sphere at R - 7 R 1  is (AZ )1’2 = a(R) = 0.43R1 which is 
much larger than the distance between two neighbouring spheres ( <0.1R1) 

-4 

t Note that up to now no analytical expressions for & anq for various lattices are proposed 
and it is even unknown whether they exist. It is easy however to develop an algorithm for their 
calculation on the basis of the crystal elementaj cell structure and the principle of long-range 
order. 
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and exceeds even the width of the RDF maximum. Therefore, the sensitivity 
of the description, provided by the quasi-crystalline model, to the type of the 
initial crystal lattice shows that the packing regularities (specific for each 
lattice) are preserved at long distances even at considerable smearing of the 
lattice. This fact illustrates very well the pithiness of the notion of packing 
order. It is the existence of packing order that predetermines the quasi- 
crystalline model being fruitful for interpretation of the RDF. 

The fact that calculations based on the FCC and HCP lattices do not fit 
experiment, and the existence of the BCC lattice which describes experiment 
well cannot be considered occasional. It is more reasonable to suppose that 
the quasicrystalline model reveals the real physical regularity of the packing 
order ofliquid argon. Thus, we may hold that atom packing in liquid argon re- 
sembles that in the BCC lattice and that this packing order is preserved at  
long distances (at least up to R - 7R,) .  

7 Conclusions 

We take two points as an invariable basis of the formalism of the quasi- 
crystalline model: formula (1) for RDF calculations which expresses in- 
dependent smearing of sites of the initial lattice by the Gaussian law, and the 
rule of modification of the coordination numbers ( 5 )  which ensures the proper 
form of the asymptote. The behaviour of the other parameters of the model 
was set not arbitrarily but was derived from the damping rate of the exper- 
imental RDF using the procedures developed in Section 3 and Section 4. The 
result is that the experimental RDF of liquid argon can be well described 
within the quasi-crystalline model under the following conditions: 

1) The BCC lattice must be taken as initial, whereas the FCC and HCP 

2) The initial lattice must be dilated by law (9) except the first coordination 

3 )  The law of structural diffusion must be modified by formula (6)  where 

lattices give worse descriptions; 

sphere; 

cx < 0. 

The last two conditions have clear physical interpretation which is in agree- 
ment with general ideas on the structure of liquids. This allows us to hold that 
the quasi-crystalline model is not merely a formal scheme but is indeed a 
physical model reflecting real features of the structure of liquids. We called 
the regularities of particle arrangement in liquids, which are described by the 
quasi-crystalline model, a packing order. 
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